Есть идея! - Страница 10

Изменить размер шрифта:

19x + 5y = 100.

Какие целочисленные значения могут принимать x и y? Один из способов получить ответ на этот вопрос состоит в том, чтобы преобразовать уравнение, оставив в левой части только член с наименьшим коэффициентом при неизвестном: 5y = 100 − 19x. Разделив обе части уравнения на 5, получим у = (100 − 19x)/5. Разделим теперь 100 и 19x на 5, выделив заведомо целую часть и дробный остаток (если он существует):

y = 20 − Зx − 4x/5.

Ясно, что выражение 4x/5 должно принимать целочисленные значения. Следовательно, x должен быть кратен 5. Наименьшее кратное 5 равно 5, что соответствует y = 1 и (если вернуться к любому из двух исходных уравнений) z = 94. При остальных значениях x, кратных 5 (и больших 5), у принимает отрицательные значения. Значит, наша задача допускает единственное решение: фермер купил 5 коров, 1 свинью и 94 овцы.

Варьируя цены на коров, свиней и овец, можно самостоятельно открыть многие премудрости элементарной теории диофантовых уравнений. Предположим, например, что коровы продаются по 4 доллара, свиньи — по 2 доллара и овцы — по ⅓ доллара за голову. Сколько животных купил фермер на 100 долларов, если известно, что он купил по крайней мере 1 корову, 1 свинью и 1 овцу? Эта задача допускает 3 решения. А что можно сказать, если корова стоит 5 долларов, свинья — 2 доллара и овца — 50 центов? Оказывается, что в этом случае решения не существует.

Теория диофантовых уравнений представляет собой обширный раздел теории чисел, имеющий бесчисленные применения во многих областях науки и техники. Одна из знаменитых задач на решение диофантовых уравнений известна под названием великой (или последней) теоремы Ферма. В ней требуется найти при любых целых положительных n > 2 решение в целых числах уравнения xn + yn = zn (при n = 2 эти решения называются пифагоровыми тройками; существует бесконечно много пифагоровых троек, начиная с 3² + 4² = 5²). Великая теорема Ферма — наиболее известная из нерешенных проблем теории чисел. До сих пор никому еще не удалось ни найти хотя бы одно решение уравнения xn + yn = zn в целых числах (при n > 2), ни доказать, что такого решения не существует.

Небольшой переполох в аптеке

Есть идея! - i056.png

Как-то раз в аптеку доставили 10 флаконов лекарства. В каждом флаконе по 1000 пилюль. Не успел провизор мистер Уайт расставить флаконы на полке, как почтальон принес телеграмму.

Есть идея! - i057.png

Мистер Уайт читает телеграмму управляющей аптекой мисс Блек.

Мистер Уайт. Срочно. Воздержитесь от продажи лекарства. По ошибке фармацевта в одном из флаконов каждая пилюля содержит на 10 мг лекарства больше допустимой дозы. Просьба незамедлительно вернуть флакон с повышенной дозой лекарства.

Есть идея! - i058.png

Мистер Уайт встревожился.

Мистер Уайт. Нечего сказать, повезло! Теперь мне придется брать по пилюле из каждого флакона и взвешивать. Веселенькое занятие!

Есть идея! - i059.png

Тяжело вздохнув, мистер Уайт хотел было приступить к неожиданно свалившейся на него работе, как мисс Блек остановила его.

Мисс Блек. Минуточку! Взвешивать 10 раз совсем не нужно! Достаточно произвести 1 взвешивание.

Каким образом при помощи 1 взвешивания можно установить, в каком флаконе пилюли содержат повышенную дозу лекарства?

Есть идея! - i060.png

Идея мисс Блек состояла в том, чтобы взять 1 пилюлю из первого флакона, 2 пилюли из второго флакона, 3 пилюли из третьего флакона…, 10 пилюль из десятого флакона…

Есть идея! - i061.png

…положить 55 отобранных пилюль на одну чашу весов и взвесить их. Предположим, что пилюли весили бы 5510 мг, или на 10 мг больше, чем следует. Тогда мисс Блек заключила бы, что среди отобранных пилюль имеется 1 пилюля с повышенной дозой лекарства, а ровно 1 пилюля была извлечена из первого флакона.

Есть идея! - i062.png

Если бы вес 55 пилюль оказался на 20 мг больше нормы, то это означало бы, что среди отобранных пилюль имеются 2 пилюли с повышенной дозой лекарства. Их можно было извлечь только из второго флакона. Так мисс Блек сумела понизить число взвешиваний до 1. Меньше не бывает!

Большой переполох в аптеке

Есть идея! - i063.png

Через 6 месяцев в аптеку доставили еще 10 флаконов того же лекарства. И на этот раз не успели распаковать коробку с флаконами, как почтальон принес телеграмму с извещением о том, что на этот раз фармацевт допустил более серьезную ошибку.

Есть идея! - i064.png

В посылке могло оказаться от 1 до 10 флаконов с пилюлями, каждая из которых на 10 мг тяжелее нормы. Мистер Уайт был вне себя от ярости.

Есть идея! - i065.png

Мистер Уайт. Что делать, мисс Блек? Ваш метод, который позволил нам так блестяще выйти из затруднения в прошлый раз, неприменим!

Мисс Блек задумалась.

Есть идея! - i066.png

Мисс Блек. Вы правы, мистер Уайт. Но если слегка модифицировать мой метод, то при помощи 1 взвешивания и на этот раз можно определить, в каких флаконах пилюли содержат повышенную дозу лекарства.

Что имела в виду мисс Блек?

Как определить непригодные пилюли?

По условиям первой задачи на взвешивание пилюль все более тяжелые пилюли находятся в одном флаконе. Взяв из различных флаконов различное число пилюль (проще всего взять из каждого флакона число пилюль, равное его номеру), мы установим взаимно-однозначное соответствие между множеством номеров и множеством флаконов.

Чтобы решить вторую задачу, необходимо воспользоваться последовательностью, которая бы сопоставляла каждому флакону отличный от других номер и обладала бы еще одним дополнительным свойством: сумма членов любой ее подпоследовательности должна быть отличной от суммы членов любой другой ее подпоследовательности. Существуют ли такие последовательности? Да, существуют. Примером может служить хотя бы геометрическая прогрессия со знаменателем 2 и первым членом 1: 1, 2, 4, 8, 16… Все члены этой последовательности — степени числа 2, причем показатель возрастает от 0 с единичным шагом. Именно эта последовательность лежит в основе двоичной системы счисления.

Решение задачи состоит в том, чтобы, выстроив флаконы в ряд, взять 1 пилюлю из первого флакона, 2 пилюли из второго флакона, 4 пилюли из третьего флакона и т. д., затем собрать все отобранные пилюли и взвесить. Предположим, что пилюли оказались на 270 мг тяжелее, чем нужно. Так как каждая пилюля с повышенной дозой лекарства тяжелее нормальной на 10 мг, то, разделив 270 на 10, мы получим 27 — число более тяжелых пилюль.

Запишем число 27 в двоичной системе: 11011. Двоичные разряды, в которых стоят единицы, говорят нам, какие степени числа 2 в сумме дают двоичное число 11011 (или десятичное число 27): 1, 2, 8 и 16. Единицы стоят в первом, втором, четвертом и пятом двоичных разрядах. Следовательно, непригодные пилюли с повышенным содержанием лекарства находятся в первом, втором, четвертом и пятом флаконах.

Двоичная система счисления находит столь широкое применение именно потому, что каждое положительное целое число можно представить в виде суммы степеней числа 2 единственным способом. Без двоичной системы счисления в наши дни немыслима работа ЭВМ. Немалую роль двоичная система играет во многих областях прикладной математики. Почетное место отведено двоичной системе и в занимательной математике.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com