Если бы числа могли говорить. Гаусс. Теория чисел - Страница 32
арифметика 21, 23, 35, 47, 48, 51, 52,58,59, 86,95, 97, 98,106, 156, 160
арифметическая прогрессия 23
«Арифметические исследования» 28,31,36,40, 45, 56-64, 101
астрономия 33, 54, 65, 75, 77, 80, 81,90,92,94,97,103,130,135, 136,146,160
бином Ньютона 22, 60
Брауншвейг 19, 20, 29, 30, 32, 33, 35,40,56, 57, 64,65, 67, 68, 125
вариационное исчисление 142, 144
взаимно простое число 59 вычеты 60, 84
гелиотроп 132
геодезическая линия 140
геодезия 123, 129-134, 150
геомагнетизм 129,147
геометрия 22, 32, 35, 36, 38, 56, 86, 103, 123, 134-141, 155, 159-160
гимназия св. Катарины 29 гипотеза 28, 29, 41, 60, 70, 71, 87, 101, 102, 104, 106, 109, 112, 119, 120, 121
вторая о простых числах 112, 121
Гольдбаха 28, 29 первая о простых числах 119
Римана 113-115,119,120
дискриминант 62 задачи
с помощью линейки и циркуля 35-43, 63, 97, 101
биссектриса 39
восьмиугольник 42
девятиугольник 42
квадрат 42, 49, 50, 84, 135, 160
квадратура круга 43
пятиугольник 40, 42
семиугольник 42
17-угольник 36, 40, 56
треугольник 26, 27, 39, 42, 50,133, 135
трисекция угла 43 удвоение куба 43
шестиугольник 39, 42
тысячелетия 118
закон взаимности квадратичный 15, 60,61
Тициуса — Боде 75-77
интегральный логарифм 111, 121
квадратичные формы 62, 63
квадратичный вычет 60
Коллегия Карла 30, 32, 56, 136
кратность повторения 59
кривизна Гаусса 138, 139
логарифмы 54, 106, 107,109,110, 111
малая теорема Ферма 60
математический анализ 22, 65, 87, 138, 160
математический дневник 9, 27
метод наименьших квадратов 36, 80-86, 88-94, 111, 132,145, 159, 160
многочлен 11, 48, 49, 50, 55, 62, 63, 118
обсерватория астрономическая 67, 82, 90, 143
Гёттингенская 30, 48, 82, 147
Палермская 77 оптика 94, 150
орбита 73, 75-94,100, 104,159, 160
плотное множество 51
последняя теорема Ферма 41, 69, 103
правильный многоугольник 35- 42,63, 64, 101
принцип индукции 24, 25
наименьшего принуждения 144, 145
регрессионная прямая 88-90
решение в радикалах 55
решето Эратосфена 98
сравнения по модулю 58-61, 63
статистика 30, 87-91, 156, 160
сумма рядов 24, 65
телеграф 143, 148, 149
теорема 27-29, 35, 36, 41, 42, 48, 50,51,53-55, 60-63, 65,70,90, 102, 135, 138
Гаусса — Маркова 11, 90
о простых числах 112, 121
основная алгебры 15, 48, 50, 62, 156
основная о сравнениях 60 Egregium 15, 138, 139
теория Галуа 55, 56
относительности 81, 141, 161
«Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям» 85, 90, 94
триангуляция 129-133
тригонометрия 131,133
университет Берлинский 113
Гёттингенский 32,33, 55, 56, 64,68, 70, 82, 113, 125, 143, 156
Казанский 22
Хельмштедский 15, 32, 34, 47
уравнения 35, 49-53, 55, 56, 59, 83, 88,89,93,119,133,139,141, 155,160
физика 12, 13, 15, 30, 87, 123, 129, 135,142-146,154
функция дзета 114, 115, 117, 119
Эйлера 59
π 109, 112, 114, 120
числа Ферма 41, 101
число действительное 51, 52, 115, 139
иррациональное 107
комплексное 52,114,118
натуральное 22-25, 28, 39, 42, 97,101, 107,144
простое 40, 59-61, 63, 69-71, 87, 97-121
рациональное 49, 51
сочетаний 22
треугольное 25-28
факториальное 22,107
Филдсовская премия 64, 66,119, 160
При жизни Карл Фридрих Гаусс получил титул короля математиков. Личность этого ученого можно сравнить с личностью другого его гениального современника и соотечественника - Вольфганга Амадея Моцарта. Оба были вундеркиндами, которым покровительствовали и помогали получить образование представители власти. Но в отличие от композитора. Гауссу повезло прожить долгую и спокойную жизнь. Он сделал много открытий в таких научных областях, как геометрия, астрономия, физика и статистика.