Экономическая статистика. Шпаргалка - Страница 4

Изменить размер шрифта:
Экономическая статистика. Шпаргалка - i_001.png

где х — значение варьирующегося признака;

n – число единиц совокупности.

Базой для расчета взвешенной средней арифметической является обработанный цифровой материал, т. е. сгруппированные данные. Для таких данных используется формула средней арифметической взвешенной:

Экономическая статистика. Шпаргалка - i_002.png

где х — значение варьирующегося признака;

m – веса, т. е. частоты, показывающие, сколько раз повторяется каждое значение признака в данной совокупности.

Формула получена путем взвешивания значений каждой варианты и деления суммы вариант на сумму весов. Формулы простой и взвешенной средней арифметической не эквивалентны друг другу.

Свойства средней арифметической:

1) алгебраическая сумма отклонений всех вариантов от средней арифметической равна нулю:

x = Σxm /Σm => x Σm = Σxm =>Σ(х-х)m = 0.

Это свойство используется для проверки правильности расчетов;

2) сумма квадратов отклонений вариант от их средней арифметической больше суммы квадратов отклонений вариант от любого другого числа, не равного средней арифметической:

Экономическая статистика. Шпаргалка - i_003.png

где x a;

3) среднее алгебраическое суммы нескольких варьирующихся признаков равно сумме средних этих признаков:

k = x + y + z + …;

Экономическая статистика. Шпаргалка - i_004.png
Экономическая статистика. Шпаргалка - i_005.png

Это свойство позволяет определить сумму путем суммирования значений каких*либо признаков;

4) если все варианты (х) увеличить или уменьшить на какое-либо постоянное число (а), средняя (x) увеличится или уменьшится на то же самое число (y):

(х – а) = у;

x – a = y;

Экономическая статистика. Шпаргалка - i_006.png

5) если все варианты (х) увеличить или уменьшить в одно и то же число раз (в), то средняя арифметическая увеличится или уменьшится в то же самое число раз:

если

Экономическая статистика. Шпаргалка - i_007.png
,
Экономическая статистика. Шпаргалка - i_008.png
 то,

Экономическая статистика. Шпаргалка - i_009.png

8. Средняя гармоническая, геометрическая, квадратическая, степенная

При решении задач расчет средней величины начинается с составления исходного отношения – логической словесной формулы средней. Она составляется на основе теоретического и логического анализа. Иногда среднюю арифметическую нельзя использовать. В этом случае в зависимости от ситуации применяется одна из трех форм средней.

Средняя гармоническая простая строится по формуле:

Экономическая статистика. Шпаргалка - i_010.png

где n — число единиц совокупности или число вариантов;

х — значения варьирующегося признака.

Средняя гармоническая простая используется для несгруппированных данных.

Средняя гармоническая взвешенная строится по формуле:

Экономическая статистика. Шпаргалка - i_011.png

где х — значения варьирующего признака;

m — веса;

n — число единиц совокупности. Среднюю гармоническую взвешенную используют для сгруппированных данных, т. е. когда каждое значение х повторяется различное число раз.

Средняя квадратическая простая строится по формуле:

Экономическая статистика. Шпаргалка - i_012.png

где n — число единиц совокупности или число вариантов; х — значения варьирующегося признака.

Средняя квадратическая простая используется для несгруппированных данных.

Средняя квадратическая взвешенная строится по формуле:

Экономическая статистика. Шпаргалка - i_013.png

где m – веса;

х – значения варьирующего признака.

Среднюю квадратическую взвешенную используют для сгруппированных данных.

Данные формулы используются редко, в специальных расчетах.

Средняя геометрическая простая строится по формуле:

Экономическая статистика. Шпаргалка - i_014.png

где n – число единиц совокупности или число вариантов;

х – значения варьирующегося признака. Средняя геометрическая простая используется для несгруппированных данных.

Средняя геометрическая взвешенная строится по формуле:

Экономическая статистика. Шпаргалка - i_015.png

где х – значения варьирующего признака;

m – веса;

n – число единиц совокупности или число вариантов. Различные формулы средних величин можно объединить в одной формуле – формуле степенной средней:

Экономическая статистика. Шпаргалка - i_016.png

где р – порядок средней.

9. Медиана и мода. Асимметрия распределения

Медианой Ме называется варианта, которая делит ранжированный вариационный ряд на две равные части, из которых значение одной половины меньше медианы, а значения другой – больше медианы.

Медиана для несгруппированных данных при нечетном числе вариантов (n = 2k+ 1), определяется как Me = xk + 1, а при четном числе вариантов (n = 2k), медиана определяется по формуле:

Экономическая статистика. Шпаргалка - i_017.png

Медиана для сгруппированных данных рассчитывается по формуле:

Экономическая статистика. Шпаргалка - i_018.png

где х0 – это нижняя граница медианного интервала;

/– величина медианного интервала;

em / 2 – полусумма всех частот;

SMe – накопленная частота, предшествующая медианному интервалу;

mМе – частота медианного интервала.

Медиана рассчитывают наряду со средней величиной или вместо нее, когда в ряду данных присутствуют открытые или неравные интервалы. Это не влияет на точность медианы, однако, влияет на точность величины.

Модой М0 называется варианта, которая имеет наибольшую частоту по сравнению с другими частотами. В дискретно-вариационном ряду мода – это та варианта, которой соответствует наибольшая частота.

В интервальном вариационном ряду с равными интервалами моду определяют по формуле:

Экономическая статистика. Шпаргалка - i_019.png

где х0 – это нижняя граница модального интервала;

h – величина модального интервала;

d1 – разность между частотами модального и предмодального интервалов;

d2 – разность между частотами модального и послемодального интервалов.

Мода рассчитывается в тех случаях, когда невозможно или нецелесообразно рассчитывать среднюю величину по обычным формулам.

Асимметрией распределения называется несоразмерность, т. е. нарушение соответствия в расположении частей одного целого относительно средней линии или центра. На графике асимметрия распределения определяется как вытянутость одной из ветвей распределения. Асимметрия распределения возникает в связи с различной частотой появления вариант больших или меньших моды (т. к. мода соответствует вершине распределения) под влиянием преобладающего действия определенных факторов. Таким образом, наличие асимметрии говорит о неустойчивости распределения совокупности в связи с преобладающим воздействием какой-либо группы факторов.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com