Эффект теломер: революционный подход к более молодой, здоровой и долгой жизни - Страница 14
Рис. 10. Теломеры и смертность. Длина теломер позволяет предсказать уровень общей смертности, а также смертности от различных болезней. У людей с самыми длинными теломерами (выше 90-й перцентили) наиболее низкие показатели смертности от рака, болезней сердца и других причин (источник: Rode et al., 2015 ).
Снова и снова ученые обнаруживали зависимость между сокращением теломер и самыми распространенными возрастными недугами. Многие масштабные исследования показали, что у людей с короткими теломерами отмечается повышенная вероятность развития ряда хронических заболеваний: диабета, болезней сердца и сосудов, легких, а также иммунных расстройств и некоторых видов рака . Существование многих таких зависимостей позже подтвердилось в обзорных исследованиях (метаанализ), что окончательно убедило научное сообщество в точности и достоверности полученных выводов. Однако эти научные открытия – если взглянуть на них с другой стороны – можно назвать и обнадеживающими. Так, в ходе исследования «Health ABC», в котором участвовали здоровые пожилые люди, было продемонстрировано, что те, у кого теломеры белых клеток крови длиннее, чем в среднем по популяции, дольше сохраняют здоровье – у них позже начинают развиваться серьезные возрастные заболевания .
Переломный момент
Люди вроде Робин Хурас, чьи теломеры из-за наследственного заболевания стремительно укорачиваются, служат наглядным примером того, какое огромное влияние теломеры оказывают на наше с вами здоровье. Иногда, как в случае с Робин, это влияние по-настоящему губительно, поскольку клеточное старение существенно ускоряется. К счастью, за последнее время мы узнали о теломерах довольно много нового. В частности, Робин и другие члены ее семьи предоставили ученым образцы своих тканей и крови, благодаря чему удалось выявить одну из генетических мутаций, вызывавших болезнь. И это был лишь первый шаг в развитии методов эффективной диагностики и лечения подобных заболеваний.
Вы тоже можете воспользоваться знаниями о теломерах, чтобы переломить ситуацию и сделать жизнь более здоровой – для себя, своих близких и всех будущих поколений. А все потому, что, как вы вскоре убедитесь сами, теломеры способны меняться. В ваших силах повлиять на то, начнут ли они укорачиваться раньше срока или еще надолго останутся длинными и здоровыми. Чтобы вы поняли, о чем идет речь, мы предлагаем вам снова заглянуть в лабораторию, где Элизабет проводит эксперименты. Со времени нашего последнего посещения тетрахимены начали вести себя весьма странным и неожиданным образом.
Глава 3
Теломераза – фермент, восстанавливающий теломеры
Вскоре после того, как я (Элизабет) изучила рентгеновский снимок с ДНК теломер, меня пригласили работать в Калифорнийский университет в Беркли, где в 1978 году я открыла собственную лабораторию, чтобы и дальше исследовать теломеры. Тут-то я и заметила нечто, не на шутку меня поразившее. Я продолжила выращивать колонии тетрахимен – тех самых «волосатых» одноклеточных созданий, из которых состоит водная муть, – и уже научилась вычислять размеры их теломер по длине ДНК. А кроме того, я выяснила, что каким-то таинственным образом при определенных условиях теломеры тетрахимен иногда начинали расти.
Это меня потрясло, ведь я ожидала, что если теломеры и будут меняться, то непременно станут укорачиваться, а не удлиняться, то есть количество последовательностей ДНК в каждой теломере будет уменьшаться. Но все выглядело так, словно тетрахимены создавали новую ДНК. Это было немыслимо! Всегда считалось, что ДНК не может изменяться. Вы наверняка слышали, что мы умираем с той же ДНК, с которой родились, и что ДНК производится исключительно за счет процесса, который можно условно назвать биологическим копированием. Я все проверила и перепроверила, но результаты подтвердились: то, что считалось невозможным, и впрямь происходило. Затем мы с Дженис Шампэй (так звали мою студентку, вместе с которой мы работали над экспериментами, придуманными мной и Джеком Шостаком, исследователем из Гарварда) обнаружили то же самое в клетках дрожжевых грибков. Позже начали поступать сообщения от других ученых: оказалось, подобные изменения наблюдаются и у остальных одноклеточных созданий, а не только у тетрахимен. На концах хромосом этих организмов появлялись новые участки ДНК. Их теломеры росли.
Никакие другие участки ДНК не ведут себя таким образом. На протяжении десятилетий ученые были убеждены, что любой отдельно взятый отрезок ДНК хромосомы существует исключительно потому, что он скопирован с существовавшей ранее ДНК. Было принято считать, что ДНК не может появляться «из воздуха», на пустом месте.
Ощущение было непередаваемое: прямо на моих глазах происходило нечто такое, чего никому прежде наблюдать не доводилось. Каждый ученый надеется совершить подобное открытие. Дух захватывает, когда неожиданные данные наталкивают на мысль о существовании неизведанных уголков мироздания, которые только и ждут, чтобы их изучили. Однако столь необычное поведение теломер привело к открытию гораздо большего, чем просто какой-то уголок мироздания, – обнаружились целые районы, о существовании которых до тех пор никому не было известно.
Теломераза: решение проблемы сокращения теломер
Я продолжала размышлять над странным поведением теломер, их способностью увеличиваться в длину. Я решила, что нужно заняться поисками фермента, который, возможно, и создавал новые участки ДНК в теломерах, – фермента, который способен восстанавливать теломеры, после того как те сократились. Настало время закатать рукава и опять приступить к выращиванию колоний тетрахимен. Почему именно их? Потому что из них можно получить изрядное количество теломер для изучения. Я решила, что так смогу обнаружить и формирующий теломеры фермент, если, конечно, он вообще существует.
В 1983 году к этим исследованиям присоединилась аспирантка Кэрол Грейдер, начавшая работать вместе со мной в лаборатории. Мы принялись проводить новые эксперименты и совершенствовать их. В день Рождества 1984 года Кэрол сделала рентгеновский снимок (авторадиограф), на котором впервые были видны отчетливые признаки работы неизвестного фермента. Когда Кэрол вернулась домой, в порыве возбуждения она пустилась в пляс посреди гостиной. Назавтра она с трудом сдерживала ликование, когда протянула мне рентгеновский снимок, ожидая моей реакции. Мы переглянулись. Каждая из нас прекрасно осознавала, что означало полученное нами изображение: теломеры способны удлинять свою ДНК, захватывая впервые обнаруженный фермент, который мы решили назвать теломеразой. Теломераза создает в теломерах новые участки ДНК, используя в качестве образца существующие последовательности нуклеотидов.
Однако науку двигают не только отдельные моменты гениальных озарений. Мы должны были убедиться в достоверности полученных результатов. Недели сменялись месяцами – мы скрупулезно продолжали исследования. Нас то и дело охватывали приступы сомнений, вслед за которыми приходили всплески радостного волнения. Шаг за шагом мы отмели все возможные причины, по которым наблюдение, сделанное нами в конце 1984 года, могло оказаться ошибочным. Наконец родилось более глубокое понимание сущности теломеразы: это фермент, который отвечает за восполнение участков ДНК, потерянных во время деления клеток. Теломераза строит и восстанавливает теломеры.
Вот что мы узнали о работе теломеразы. Фермент состоит из белков и РНК – своего рода копии ДНК. Эта копия содержит шаблон последовательности ДНК, которая затем раз за разом будет повторяться в теломере. Теломераза использует этот шаблон РНК как встроенную биохимическую инструкцию для воссоздания правильной последовательности нуклеотидов в новой ДНК. Благодаря этому удается воспроизвести такую ДНК, которая притягивает к себе защитный слой белка, покрывающий теломеры. Итак, теломераза добавляет новые фрагменты ДНК на концах хромосом, руководствуясь шаблоном последовательности, взятым из РНК, а также присущим ДНК принципом объединения отдельных нуклеотидов в пары. В итоге добавляются точно подобранные последовательности нуклеотидов, которые повторяют уже существующие. За счет этого механизма теломераза достраивает окончания хромосом взамен утраченных участков.