Десять великих идей науки. Как устроен наш мир. - Страница 18

Изменить размер шрифта:

Как только в ДНК увидели генетическое вещество, возник огромный интерес к деталям ее структуры. Туман над этой структурой начал развеиваться, когда австро-американский биохимик Эрвин Чаргафф (р. 1905), родившийся в городе Черновцы в западной Украине (входившем в Австрию под именем Черновиц) и эмигрировавший в Соединенные Штаты для работы в Колумбийском университете в Нью-Йорке, обратил свое внимание на эту проблему. В 1950, используя новую технику «бумажной хроматографии», которая позволяла разделять и идентифицировать тесно связанные виды соединений путем нанесения их смесей на полоску бумаги, Чаргафф обнаружил равные количества аденина и тимина и равные количества гуанина и цитозина, независимо от вида ткани, из которой он экстрагировал ДНК. Из этого следовало предположение, что аденин каким-то образом всегда ассоциирован с тимином, а гуанин всегда ассоциирован с цитозином. Он также обнаружил, что пропорции долей каждой пары оснований различаются от вида к виду, но являются одинаковыми для различных клеток одного и того же животного. Наблюдения показали, что существует не одна, а много ДНК, и что состав каждой ДНК специфичен для данного организма, в точности как если бы это была его светокопия. Чаргафф также обнаружил, что какие бы виды он ни использовал в качестве источника ДНК, полное количество пуринов (двойных колец аденина и гуанина) является таким же, как полное количество пиримидинов (одиночных колец цитозина и тимина). Вся эта информация оказалась, безусловно, решающей для распознавания структуры ДНК и, как выяснилось задним числом, является почти достаточной, чтобы понять структуру молекулы.

Роль ветра, который окончательно унес остатки тумана, сыграла информация, полученная с помощью экспериментов по диффракции рентгеновских лучей, которые провели новозеландец Морис Уилкинс (р. 1916) и Розалинда Франклин (1920-1958) в Королевском колледже в Лондоне, и дальнейшее развитие их результатов Френсисом Криком (р. 1916 в Нортгемптоне) и Джеймсом Уотсоном (р. 1928 в Чикаго) в Кембридже. Как уже в тысячу раз было пересказано, это была история надувательства, соперничества, напористости, рвения, враждебности, трагедий, женоненавистничества, мошеннических трюков, в большей мере, чем можно вообразить. Вероятно, нельзя считать слишком большим сюрпризом тот факт, что одно из наиболее важных открытий двадцатого века с неизбежностью вызвало к жизни наиболее человеческие эмоции и взаимоотношения.

Трагической фигурой, безусловно, была Франклин, умершая в тридцать семь лет от рака яичников, почти наверняка вызванного облучением рентгеновскими лучами, которыми она пользовалась в своей работе: жизнь не выдает своих секретов, не требуя жизни взамен. Соблазнительно было бы произвести Франклин из трагической фигуры в трагическую героиню и поставить ее в центр всей истории, но это не соответствует фактам. Факты этой очень человеческой истории выглядят следующим образом. Они должны дать абрис обстановки в Британии середины двадцатого века, когда с сегодняшней точки зрения отношение мужчин к женщинам было… неразвитым.

Уилкинс работал над ДНК в Королевском колледже, когда глава лаборатории, намереваясь построить рентгеновский аппарат, пригласил Франклин поработать в колледже и вложить в дело свои специальные познания в рентгеновской кристаллографии. Она приобрела эти познания, изучая микроструктуру угля в парижской лаборатории и была живо заинтересована в том, чтобы переключить свое внимание на живую жизнь в большей степени, чем на ископаемую. Было не вполне ясно, удастся ли ей совершить эту перемену места работы, поскольку Королевский колледж в то время запрещал женщинам находиться в его общей комнате. [9]Уилкинс отсутствовал в момент ее появления и, возвратясь, был приведен в замешательство ролью новой сотрудницы. Немедленно произошло столкновение темпераментов, и каждый из соперников создал свою лабораторию для работы над ДНК. Обе группы вскоре получили весьма неплохие рентгеновские фотографии нитей, образующих эту молекулу. На конференции в Неаполе Уилкинс встретил молодого американского биолога Джеймса Уотсона и показал ему свои изображения. Это побудило Уотсона начать работу над структурой ДНК, и в сентябре 1951 г. он отправился в Кембридж, чтобы изучить дифракцию рентгеновских лучей в лаборатории, которой заведовал сэр Лоуренс Брэгг, один из основателей рентгеновской кристаллографии. Здесь Уотсон встретил Френсиса Крика, как раз заканчивавшего докторскую диссертацию.

В ноябре 1951 г. эти два потока усилий столкнулись, один, имевший тщательно проделанные измерения, но лишенный отваги (или способности) предложить собственную их интерпретацию, другой со смелыми умозаключениями, но без ресурсов (или терпения) для проведения измерений. Уотсон приехал в Лондон и выслушал сообщение Франклин о ее работе. Он поторопился назад в Кембридж, где вместе с Криком они построили модель, которую считали соответствующей тому, что Уотсон смог запомнить из данных Франклин, и пригласили Лондонскую команду приехать и посмотреть на нее. Построение моделей — реальных физических моделей, собранных из проволоки и кусков металла — демонстрировало могущество техники в деле прояснения структуры белков, и Крик и Уотсон просто следовали моде своего времени. Лондонская команда приехала и немедленно отвергла модель как несогласующуюся с их данными. Они также отвергли и сам метод сооружения моделей, метод потенциально (а как оказалось, и реально) продуктивный. Более того, Брэгг приказал Крику и Уотсону прекратить работу над ДНК, оставив ее Лондонской команде, которой и принадлежал весь проект. Отношение к собственности в науке, так же как отношение к женщине, изменилось с тех пор: возможно, следующий шаг и отмечает поворотный пункт к будущему.

В 1952 г. Крик и Уотсон узнали, что Линус Полинг, весьма успешно исследовавший структуру белков, в которой Брэгг не разбирался, работает над той же проблемой. Если работает Полинг, решили они, значит, собственность на проблему уже ускользнула из рук лондонцев, и они имеют право работать над ней, как и любой другой. Далее случилось нечто немного странное. В этот момент Уилкинс без ведома Франклин показал Уотсону одну из ее рентгеновских фотографий (рис. 2.6), а Макс Перуц предоставил ему и Крику неопубликованный доклад в Совете медицинских исследований, в котором Франклин сводила вместе свои последние данные. Наконец-то они получили некоторые определенные числа, характеризующие размеры спиральной молекулы, и смогли подогнать к ней свою модель. Через несколько недель они уже имели возможность с триумфом отослать Уилкинсу свою знаменитую модель, и он ее получил. Трио публикаций, одна Крика и Уотсона, одна группы Уилкинса и одна группы Франклин (Франклин так никогда и не узнала, что Уилкинс воспользовался ее данными), появилось в Nature25 апреля 1953 г. Две последних предоставили данные эксперимента, подтверждающие умозрения первой. Эта дата, 25 апреля 1953 г., является днем рождения современной биологии.

Десять великих идей науки. Как устроен наш мир. - i_020.jpg

Рис. 2.6.Этот снимок дифракции рентгеновских лучей, полученный Розалиндой Франклин, был решающей для понимания детальной структуры ДНК частью экспериментальных данных. Он подтверждает, что эта молекула имеет форму двойной спирали, а детали фотографии могут быть использованы для определения размеров этой спирали.

Структура ДНК теперь повсеместно известна как знаменитая символическая правосторонняя двойная спираль, в которой одна длинная нить нуклеиновой кислоты обернута вокруг другой, образуя сплетенную пару (рис. 2.7), которая весьма похожа на сплетенные лестницы входа для публики в музее Ватикана [10], что выглядит немного иронично. Ключевым моментом, однако, оказывается то, что нуклеотидные основания одной нити являются парными к нуклеотидам другой (рис. 2.8), так что аденин всегда в паре с тимином (что мы обозначаем как A…T), а гуанин всегда вместе с цитозином (что обозначаем как G…C). Эта парность соответствует наблюдению Чарграффа, показавшему, что количество аденина в его образцах таково же, как количество тимина, а количество гуанина равно количеству цитозина: комплементарность гарантирует равенство их количеств. Можно также отметить, что относительно маленький пурин (аденин и гуанин) всегда спарен с более крупным пиримидином (тимин и цитозин), поскольку таким способом поддерживается форма двойной спирали: два больших пурина попадают в выпуклость, а два маленьких пиримидина в снижающуюся часть витка спирали. Парность соответствует и другому наблюдению Чарграффа: количество пуринов (A+G) в образце равно количеству пиримидинов (T+C).

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com