Борьба за скорость - Страница 46

Изменить размер шрифта:

Ракета, преодолев притяжение Земли, путешествует между планетами. Победив притяжение Солнца, она перестает быть членом нашей солнечной системы и устремляется в глубины Вселенной, в далекий космический рейс.

Скорость, быстрое движение помогает ей разорвать оковы тяжести.

Электроны, которые непрочно удерживались ядром атома металла, освобождаются от него. Они становятся свободными, перестают быть спутниками ядра, членами его системы. Если скорость их достаточно велика, они побеждают притяжение электрических сил заряженных атомов и становятся свободными не только от своего «родного» атома, но и от всех атомов металла.

Как получить такие быстрые электроны? Что может заставить электроны покинуть металл?

Нагрев, высокая температура.

Теплота — это движение, и чем больше нагрет металл, тем быстрее двигаются его частицы, атомы и электроны.

Сначала немного, а потом все больше электронов срывается с поверхности. Возникает поток электронов, лавина электрических частиц.

Они невидимы, но дают знать о себе. Бомбардируя экран, покрытый слоем сернистого цинка, они заставляют его светиться. На светлом фоне экрана со слоем хлористого калия под ударами электронов появляются темные пятна.

Впрочем, так будет при одном условии: если электроны полетят в пустоте. В плотном воздухе или газе им не удастся добраться до экрана — движению помешают встречные газовые частички. И потому раскаленный металл — источник электронов — помещают в баллон, из которого выкачан воздух. Если в баллоне еще остается разреженный газ, то электронная лавина бомбардирует атомы газа.

Бомбардировка эта производит переполох в атомном мире. В него-ворвалась заряженная частица — быстро летящий электрон. Конечно, попасть в ядро такому электрону невозможно, его энергии недостаточно, чтобы прорваться к сердцу атома. Но тем не менее, в атоме происходят крупные события.

Влетевший электрон принес энергию. Это не может не отразиться на состоянии атома. Он возмущен вмешательством. Ведь там, в атомном мире, существует строгий порядок. По вполне определенным путям — орбитам — и только по ним разрешается двигаться вокруг ядра его спутникам-электронам. Однако они могут перескакивать с одной орбиты на другую. Энергия, принесенная извне, и помогает им это сделать.

Но даром такой прыжок для атома не проходит, ибо каждый электрон обладает совершенно определенной энергией, своей для каждой орбиты. И прыжок электрона на другую орбиту сопровождается изменением его энергии: излишек ее должен уйти. Он и уходит в виде излучения, света. Потрясенный, как говорят физики, возбужденный, атом испускает свет. Он стремится вернуться к прежней, «спокойной» жизни. Свечение атома сигнализирует нам об этих потрясениях.

Вот, кстати, почему светится раскаленный газ. Его атомы быстро двигаются, сталкиваясь между собою, их энергия увеличивается и становится достаточной, чтобы при столкновении происходили перескоки электронов с орбиты на орбиту. Попав на другую орбиту, электрон тотчас же стремится перейти на орбиту, ему разрешенную, избавившись от излишка энергии, которую он получил. Излучается порция световой; энергии — квант, излучается свет, характерный для атома данного газа. Все это происходит, разумеется, в невообразимо малые доли секунды.

И электрический ток, поток электронов в разреженном газе, также возбуждает его атомы.

Под ударами электронов газ начинает светиться. Красным, зеленым, синим цветом светятся надписи реклам. Белый свет, напоминающий солнечный, дают «лампы дневного света».

В электронных приборах удается сейчас достигнуть разрежения в тысячемиллиардную долю атмосферы! Такая пустота господствует далеко за пределами атмосферы, в межпланетном пространстве.

Она нужна в электронном приборе для того, чтобы расчистить дорогу электронам. Ведь и при давлении в миллион раз меньше атмосферного каждый кубический сантиметр пространства содержит еще около 10 тысяч миллиардов молекул воздуха.

Только в почти идеальной пустоте, при очень глубоком вакууме свободным электронам открыта свободная дорога.

Но источник электронов (его называют катодом) и глубокий вакуум еще далеко не все, что нужно для создания электронного прибора.

Потоком электронов необходимо еще управлять, ускорять его движение, изменять направление. Как же это сделать? Как повелевать частичками, которые в сотни тысяч раз меньше атома?

Здесь приходит на помощь сама природа этих частичек, мельчайших зарядов отрицательного электричества. Разноименные заряды притягиваются, а одноименные — отталкиваются. Значит, электричеством можно управлять — электричеством же.

Поставив на пути электронного потока положительно заряженный электрод (его называют анодом), мы заставим электроны двигаться быстрее, потому что анод будет их притягивать. Невообразимо мал и легок электрон. Потому и можно разогнать его электрической силой до чудовищных скоростей в десятки тысяч километров в секунду.

Инженер Г. Прудковский приводит следующий интересный пример. Чтобы переместить грамм массы детали какой-нибудь машины на один миллиметр в течение одной миллионной доли секунды, нужно усилие в 200 тонн. Для сравнения: при выстреле из артиллерийского орудия пороховые газы давят на снаряд с силой всего около 10 килограммов на каждый грамм его веса.

Напряжение в один вольт действует на ничтожно малый электрон с ничтожной силой. В пересчете же на грамм массы эта сила составляет около 2 миллионов тонн! Расстояние в один сантиметр между катодом и анодом электрон пролетает за 4 стомиллионных доли секунды. Его скорость — 600 километров в секунду. Увеличивая напряжение между катодом и анодом, можно электрон заставить двигаться еще быстрее. Так, при напряжении в 1 000 вольт скорость достигнет 18 тысяч километров в секунду. Тогда полет электрона займет всего одну миллиардную долю секунды.

Электроны в наших приборах соперничают в скорости со светом.

Физика учит, что при больших скоростях, сравнимых со световой, действуют особые законы. Масса начинает расти с увеличением скорости. И действительно, электрон разогнанный до скорости, скажем, 50 тысяч километров в секунду, весит уже несколько больше, чем весил он до начала движения — примерно на 2 процента.

Ученые получают и еще большие скорости электронов. Поток быстрых мельчайших частичек, разгоняемых электрическими силами, стал в руках человека мощным орудием для бомбардировки атомного ядра, орудием для изучения атомного мира.

В ускорителях заряженных частиц удается приблизиться к скорости света. Именно в них получена скорость, которая почти равна световой, — меньше ее всего лишь на три сотых доли процента. Это самая большая скорость, которую человек получил искусственно на Земле.

Чтобы заставить электроны нестись вдогонку за светом, их разгоняют, пользуясь электрическими и магнитными силами. Электрон, подхлестываемый ими, сотни тысяч раз проносится по своей круговой орбите в своеобразной электромагнитной «карусели». За ничтожное время он успевает пробежать по кругу путь в тысячу с лишним километров. С каждым новым оборотом набирает электрон скорость, которая к концу разгона и получается столь чудовищно большой.

А большая скорость — это большая энергия. Получившие огромную энергию, частицы, как снаряды какой-то сверхмощной артиллерии, вторгаются в недра атома. Эти «возмутители спокойствия» выбивают из его ядра отдельные частицы. Ядро одного элемента превращается в ядро другого. Один элемент превращается в другой.

Еще сравнительно недавно 92-м элементом заканчивалась таблица Менделеева. Сейчас в ней 100 элементов. Искусственно получены новые, неизвестные нам раньше элементы.

Познание атомных превращений, управление ими — вот что дают сверхбыстрые машины, где работают потоки заряженных частиц.

Из глубины Вселенной приходят на Землю космические лучи. Они врываются в земную атмосферу, сокрушая частички воздуха на своем пути, выбивая из них электроны, а иногда даже разрушая ядра атомов. Целую лавину сложнейших превращений в атомах и молекулах вызывают космические частицы.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com