Большое, малое и человеческий разум - Страница 22

Изменить размер шрифта:

Таким образом, моя версия сильного С-утверждения выглядит следующим образом: мы должны искать в физике «невычислимость», позволяющую связать квантовый и классический уровни описания. Конечно, такая постановка вопроса представляется чрезвычайно сложной и трудной, ведь я говорю о необходимости построения не просто новой физики, а физики, относящейся к описанию работы мозга.

Прежде всего давайте подумаем о том, насколько вообще правдоподобно или вероятно существование чего-то невычислимого в нашем понимании. Позвольте мне привести в качестве примера очень простую и симпатичную шахматную задачу. Вы знаете, что компьютеры уже неплохо играют в шахматы. Однако самый мощный современный шахматный компьютер «ДипСот», решая приведенную на рис. 3.5 задачу, начинает делать очень глупые ходы. Легко видеть, что в этой позиции черные имеют огромное материальное преимущество (две лишние ладьи и слона), которое, однако, не имеет никакого значения для исхода партии, поскольку белые пешки «намертво» блокируют черные фигуры. Пока белый король спокойно «бродит» за барьером из своих пешек, белые просто не могут проиграть. Однако компьютер «ДипСот» первым же ходом за белых взял черную ладью, после чего положение белых стало безнадежным. Причина, конечно, состоит в том, что компьютер запрограммирован на действие (ход за ходом) до некоторой глубины расчета, после чего он вновь начинает считать пешки и т. п. В принципе приведенный пример не очень удачен, так как если бы компьютер мог считать на очень много ходов вперед, он не ошибся бы (в конце концов, шахматы относятся именно к «вычислимым» играм). Однако заметьте, что человек-шахматист практически сразу видит барьер из пешек, понимает его непроницаемость и значение, после чего легко находит стратегию игры. Компьютер не обладает таким общим «пониманием» и начинает просто рассчитывать ход за ходом. Этот пример демонстрирует огромную разницу между простым вычислением и способностью к пониманию.

Рис. 3.5. Белые начинают и добиваются ничьей.

Человек легко решает эту задачу, но компьютер «ДипСот» первым же ходом бьет ладью черных! (задача Вильяма Харстона из статьи Джейн Сермор и Дэвида Норвуда в журнале New Scientist, № 1889, с. 23, 1993).

Большое, малое и человеческий разум - pic58.jpg

Разумеется, вы можете обучить ЭВМ использованию пешечного барьера, но проблема имеет более сложный и глубокий характер. В еще одном шахматном примере (рис. 3.6) белым следует поставить слона на b4 и, используя его вместо пешки, вновь создать непреодолимый пешечный барьер (вместо весьма заманчивого, но безнадежного взятия черной ладьи на а5). Задача очень похожа на предыдущую, но компьютер (даже если он умеет создавать пешечный барьер) опять начинает ошибаться, поскольку эта задача требует значительно более высокого уровня понимания. Вы можете возразить, что при желании в программу можно ввести все уровни понимания, и вы были бы правы, если бы рассмотрение относилось только к шахматным задачам. Повторю, что шахматы относятся к «вычислимым» играм, поэтому при достаточно мощном компьютере и хорошей программе можно (по крайней мере, в принципе) рассчитать до конца все вероятности. Пока это никому не удалось проделать, однако нас устроит и принципиальная возможность получения такого решения в будущем. Тем не менее, я надеюсь, вы почувствовали, что в термине «понимание» содержится нечто, не сводящееся к прямому расчету. Совершенно определенно можно сказать, что человеческий подход к решению даже таких простых шахматных задач существенно отличается от компьютерного.

Рис. 3.6. Белые начинают и добиваются ничьей.

Человек легко решает и эту задачу, а шахматный компьютер вновь ошибается и первым ходом бьет слоном черную ладью (тест Тьюринга, рассматриваемый в цитированной статье Вильяма Харстона и Дэвида Норвуда).

Большое, малое и человеческий разум - pic59.jpg

Можно ли привести еще более сильные доводы в пользу того, что наше понимание содержит в себе нечто большее, чем набор вычислительных операций? Мне не хочется тратить слишком много времени на доказательство этого утверждения, однако это настолько важно для всей моей концепции, что я приведу еще в качестве примера несколько чисто математических задач. Читателю, заинтересовавшемуся проблемой связи мышления и вычислительных операций, я рекомендую прочитать мою книгу «Тени разума», где первые 200 страниц посвящены детальному и всестороннему обзору аргументации сторон в многочисленных дискуссиях по этому поводу.

Давайте поговорим о вычислениях чуть подробнее. Вычислениями я называю то, что делают вычислительные машины. Реальные компьютеры имеют ограниченную память, но я буду рассматривать работу идеального компьютера (так называемой машины Тьюринга), который отличается от обычных компьютеров неограниченным объемом памяти и способностью осуществлять совершенно безошибочные вычисления сколь угодно долго, практически вечно. Рассмотрим конкретную вычислительную задачу, связанную с арифметическими и логическими операциями:

Найти число, не представимое суммой трех квадратных чисел.

Под числом я подразумеваю натуральное число (типа 0, 1,2, 3, 4, 5, ...), а под «квадратным числом» — квадраты натуральных чисел (типа 02, 12, 22, З2, 42, 52, ...). Я покажу вам сразу, как решается эта задача. Метод может показаться очень простым и даже примитивным, но он как раз дает неплохое представление о сущности того, что мы подразумеваем под вычислениями. Начнем с нуля и проверим, является ли он суммой трех квадратных чисел, для чего просто рассмотрим квадраты всех тех чисел, которые меньше или равны нулю. Естественно, мы имеем лишь одно такое квадратное число, а именно 02, в результате чего можем записать

0 = 02 + 02 + 02,

т.е. 0 действительно можно представить в виде суммы трех квадратов. Перейдем затем к единице и выпишем все возможные комбинации чисел, равных или меньше 1, в результате чего получим

1 = 02 + 02 + 12.

В табл. 3.2 я выписал результаты всех этих скучных и утомительных операций до числа 7, которое (как легко видеть из таблицы, где просто перечислены все комбинации) нельзя записать в виде суммы трех квадратов. Таким образом, число 7 является ответом для нашей задачи — оно представляет собой наименьшее число, которое нельзя представить в виде суммы трех квадратов. Этот пример довольно типичен для вычислительного метода решения простой по формулировке задачи.

Таблица 3.2

Большое, малое и человеческий разум - pic75.jpg

Мы можем считать, что нам несколько повезло с задачей, поскольку вычисления привели к ответу довольно быстро, однако ясно, что в других задачах расчет может занимать очень много времени или даже продолжаться до бесконечности. Например, предположим, что я несколько изменил условия и нам необходимо:

Найти число, не являющееся суммой четырех квадратных чисел.

Еще в XVIII веке знаменитый математик Лагранж доказал теорему о том, что каждое число может быть записано в виде суммы квадратов четырех чисел. Поэтому если вы начнете поиск нужного числа по предложенному выше методу, то ваш компьютер будет бестолково «тарахтеть» целую вечность, но так и не найдет ответа. Это пример задачи, решение которой простым вычислением может продолжаться бесконечно.

Доказательство теоремы Лагранжа довольно сложно, поэтому я приведу гораздо более доступный и легкий пример. Предположим, что мы хотим:

Найти нечетное число, представимое в виде суммы двух четных чисел.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com