Большая Советская Энциклопедия (ПЛ) - Страница 10
Т. о., при наличии магнитного поля в однородной П. возможны волны шести типов: три высокочастотные и три низкочастотные. Если температура или плотность П. в магнитном поле неоднородны, то возможны ещё так называемые «дрейфовые» волны. При больших амплитудах возможны «бесстолкновительные» ударные волны (наблюдаемые на границе магнитосферы), уединённые волны (солитоны), а также ряд др. «нелинейных» волн и, наконец, сильноразвитая турбулентность движения П.
В неравновесной П. при определённых условиях возможна «раскачка неустойчивостей», т. е. нарастание какого-либо из перечисленных типов волн до некоторого уровня насыщения. Возможны и более сложные случаи индуцированного возбуждения волн одного типа за счёт энергии волн другого типа.
Излучение плазмы. Спектр излучения низкотемпературной (например, газоразрядной) П. состоит из отдельных спектральных линий. В газосветных трубках, применяемых, в частности, для целей рекламы и освещения (лампы «дневного света»), наряду с ионизацией происходит и обратный процесс — рекомбинация ионов и электронов, дающая так называемое рекомбинационное излучение со спектром в виде широких полос.
Для высокотемпературной П. со значительной степенью ионизации характерно тормозное излучение с непрерывным спектром, возникающее при столкновениях электронов с ионами. В магнитном поле ларморовское вращение электронов П. приводит к появлению так называемого магнитотормозного излучения на гармониках циклотронной частоты, особенно существенного при больших (релятивистских) энергиях электронов. Важную роль в космической П. играет вынужденное излучение типа обратного Комптона эффекта. Им, а также магнито-тормозным механизмом обусловлено излучение некоторых космических туманностей, например Крабовидной.
Корпускулярным излучением П. называются быстрые частицы, вылетающие из неравновесной П. в результате развития различных типов неустойчивостей. В первую очередь в П. раскачиваются какие-либо характерные колебания, энергия которых затем передаётся небольшой группе «резонансных» частиц (см. выше). По-видимому, этим механизмом объясняется ускорение не очень энергичных космических частиц в атмосфере Солнца и в туманностях, образующихся при вспышках сверхновых звёзд типа пульсара в Крабовидной туманности.
Диагностика плазмы. Помещая в П. электрический зонд (маленький электрод) и регистрируя зависимость тока от подаваемого напряжения, можно определить температуру и плотность П. С помощью миниатюрной индукционной катушки — «магнитного зонда» — можно измерять изменение магнитного поля во времени. Эти способы связаны, однако, с активным вмешательством в П. и могут внести нежелательные загрязнения. К более чистым методам относятся «просвечивание» П. пучками нейтральных частиц и пучками радиоволн. Лазерное просвечивание П. в различных вариантах, в том числе с использованием голографии, является наиболее тонким и к тому же локальным методом лабораторной диагностики П.
Часто используют также пассивные методы диагностики — наблюдение спектра излучения П. (единственный метод в астрономии), вывод быстрых нейтральных атомов, образовавшихся в результате перезарядки ионов в П., измерение уровня радиошумов. Плотную П. изучают с помощью сверхскоростной киносъёмки(несколько млн. кадров в сек) и развёртки оптической. В исследованиях по УТС регистрируется также рентгеновский спектр тормозного излучения и нейтронное излучение дейтериевой П.
Применения плазмы. Высокотемпературная П. (Т ~ 108 К) из дейтерия и трития — основной объект исследований по УТС. Такая П. создаётся путём нагрева и быстрого сжатия П. током (используется также высокочастотный подогрев) либо путём инжекции высокоэнергичных нейтральных атомов в магнитное поле, где они ионизуются, либо облучением мишени мощными лазерами или релятивистскими электронными пучками.
Низкотемпературная П. (Т ~ 103 К) находит применение в газоразрядных источниках света и в газовых лазерах, в термоэлектронных преобразователяхтепловой энергии в электрическую и в магнитогидродинамических (МГД) генераторах, где струя П. тормозится в канале с поперечным магнитным полем В, что приводит к появлению между верхним и нижним электродами (рис. 9) электрического поля напряжённостью Е порядка Bu/c (u — скорость потока П.); напряжение с электродов подаётся во внешнюю цепь.
Если «обратить» МГД-генератор, пропуская через П. в магнитном поле ток из внешнего источника, образуется плазменный двигатель, весьма перспективный для длительных космических полётов.
Плазматроны, создающие струи плотной низкотемпературной П., широко применяются в различных областях техники. В частности, с их помощью режут и сваривают металлы, наносят покрытия (см. Плазменная металлургия, Плазменная обработка, Плазменное бурение). В плазмохимии низкотемпературную П. используют для получения некоторых химических соединений, например галогенидов инертных газов типа KrF, которые не удаётся получить др. путём. Кроме того, высокие температуры П. приводят к высокой скорости протекания химических реакций — как прямых реакций синтеза, так и обратных реакций разложения. Если производить синтез «на пролёте» плазменной струи, расширяя и тем самым быстро охлаждая её на следующем участке (такая операция называется «закалкой»), то можно затруднить обратные реакции разложения и существенно повысить выход требуемого продукта.
Лит.: Арцимович Л. А., Элементарная физика плазмы, 3 изд., М., 1969; его же. Управляемые термоядерные реакции, 2 изд., М., 1963; Франк-Каменецкий Д. А., Лекции по физике плазмы, М., 1963; Альвен Г., Фельтхаммар К.-Г., Космическая электродинамика, пер. с англ., 2 изд., М., 1967; Спитцер Л., Физика полностью ионизованного газа, пер. с англ., М., 1957; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; Трубников Б. А., Введение в теорию плазмы, М., 1969; Вопросы теории плазмы. Сб., под ред. М. А. Леонтовича, в. 1—7, М., 1963—73.
Б. А. Трубников.
Рис. 4. При высокой электропроводности среды силовые линии магнитного поля В движутся вместе с нею (свойство вмороженности силовых линий), v — скорость среды.
Рис. 9. Схема МГД — генератора, преобразующего кинетическую энергию движущейся плазмы в электрическую энергию. R — внешняя нагрузка генератора, по которой протекает ток I.
Рис. 1. Электроны, вылетая по инерции из плазмы, нарушают квазинейтральность на длине порядка дебаевского радиуса экранирования D и повышают потенциал плазмы (ni, и ne — соответственно, плотности ионов и электронов).
Рис. 3. Электрон, пролетающий мимо иона, движется по гиперболе.
— угол отклонения.Рис. 7. Токамак. Токи, текущие в проводящем кожухе, препятствуют смешению плазменного шнура.
Рис. 8. Синусоидальный профиль плотности электронов в монохроматической плазменной волне.
Рис. 2. Вращение ионов и элекронов по ларморовским спиралям ослабляет внешнее магнитное поле (диамагнетизм плазмы). Радиус вращения иона с зарядом е > 0 больше, чем у электрона (е < 0). v║ и v^ — параллельные и перпендикулярные магнитному полю В составляющие скоростей частиц.