Атлас: анатомия и физиология человека. Полное практическое пособие - Страница 2
Рис. 1. Ультрамикроскопическое строение клетки. 1 – цитолемма (плазматическая мембрана); 2 – пиноцитозные пузырьки; 3 – центросома клеточный центр (цитоцентр); 4 – гиалоплазма; 5 – эндоплазматическая сеть: а – мембрана зернистой сети; б – рибосомы; 6 – связь перинуклеарного пространства с полостями эндоплазматической сети; 7 – ядро; 8 – ядерные поры; 9 – незернистая (гладкая) эндоплазматическая сеть; 10 – ядрышко; 11 – внутренний сетчатый аппарат (комплекс Гольджи); 12 – секреторные вакуоли; 13 – митохондрия; 14 – липосомы; 15 – три последовательные стадии фагоцитоза; 16 – связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети
Клетка состоит из неорганических и органических веществ. Среди неорганических наибольшее количество воды. Относительное количество воды в клетке составляет от 70 до 80 %. Вода – универсальный растворитель, в ней происходит все биохимические реакции в клетке. При участии воды осуществляется теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными. Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Другие неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5 %.
Среди органических веществ преобладают белки (10–20 %), жиры, или липиды (1–5 %), углеводы (0,2–2,0 %), нуклеиновые кислоты (1–2 %). Содержание низкомолекулярных веществ не превышает 0,5 %.
Молекула белка является полимером, который состоит из большого количества повторяющихся единиц мономеров. Мономеры белка аминокислоты (их 20) соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка). Она закручивается в спираль, образуя, в свою очередь, вторичную структуру белка. Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.
Белки выполняют важнейшие функции. Ферменты – биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии.
Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных – крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.
К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран (они описаны ниже), выполняют тем самым строительную функцию. Липиды – важнейшие источники энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира – 38,9 кДж. Липиды осуществляют терморегуляцию, защищают органы (жировые капсулы).
Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами нуклеотидами. Нуклеотид состоит из пуринового или пиримидинового основания, сахара (пентозы) и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонулеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров (табл. 1, рис. 2).
Рис. 2. Пространственная структура нуклеиновых кислот (по Б. Албертсу и соавт., с изм.). I – РНК; II – ДНК; ленты – сахарофосфатные остовы; A, C, G, T, U – азотистые основания, решетки между ними – водородные связи
Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в виде двойной спирали. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями. Аденин соединяется только с тимином, а цитозин – с гуанином (А – Т, Г – Ц). В ДНК записана генетическая информация, которая определяет специфичность синтезируемых клеткой белков, т. е. последовательность аминокислот в полипептидной цепи. ДНК передает по наследству все свойства клетки. ДНК содержится в ядре и митохондриях.
Молекула РНК образована одной полинуклеотидной цепью. В клетках существует три типа РНК. Информационная, или мессенджер РНК тРНК (от англ. messenger – «посредник»), которая переносит информацию о нуклеотидной последовательности ДНК в рибосомы (см. ниже).
Транспортная РНК (тРНК), которая переносит аминокислоты в рибосомы. Рибосомальная РНК (рРНК), которая участвует в образовании рибосом. РНК содержится в ядре, рибосомах, цитоплазме, митохондриях, хлоропластах.
Таблица 1
Состав нуклеиновых кислот
Строение клетки человека
Для всех клеток типично наличие цитоплазмы и ядра (см. рис. 1). Цитоплазма включает в себя гиалоплазму, органеллы общего назначения, имеющиеся во всех клетках, и органеллы специального назначения, которые есть лишь в определенных клетках и выполняют специальные функции. В клетках встречаются также временные клеточные структуры включения.
Размеры клеток человека варьируют от нескольких микрометров[1] (например, малый лимфоцит) до 200 мкм (яйцеклетка). В организме человека встречаются клетки различной формы: овоидные, шаровидные, веретеновидные, плоские, кубические, призматические, полигональные, пирамидальные, звездчатые, чешуйчатые, отросчатые, амебовидные.
Снаружи каждая клетка покрыта плазматической мембраной (плазмолеммой) толщиной 9–10 нм, ограничивающей клетку от внеклеточной среды. Они выполняет следующие функции: транспортную, защитную, разграничительную, рецепторную восприятия сигналов внешней (для клетки) среды, участие в иммунных процессах, обеспечение поверхностных свойств клетки.
Будучи очень тонкой, плазмолемма не видна в световом микроскопе. В электронном микроскопе, если срез проходит под прямым углом к плоскости мембраны, последняя представляет собой трехслойную структуру, наружная поверхность которой покрыта тонкофибриллярным гликокаликсом толщиной от 75 до 2000 А°, совокупность молекул, связанных с белками плазмолеммы.
Рис. 3. Строение клеточной мембраны, схема (по А. Хэму и Д. Кормаку). 1 – углеводные цепи; 2 – гликолипид; 3 – гликопротеид; 4 – углеводородный «хвост»; 5 – полярная «головка»; 6 – белок; 7 – холестерин; 8 – микроктрубочки
Плазмолемма, как и другие мембранные структуры, состоит из двух слоев амфипатических[2] молекул липидов (билипидный слой, или бислой). Их гидрофильные «головки» направлены к наружной и внутренней сторонам мембраны, а гидрофобные «хвосты» обращены друг к другу. В билипидный слой погружены молекулы белка. Некоторые из них (интегральные, или внутренние трансмембранные белки) проходят через всю толщу мембраны, другие (периферические, или внешние) лежат во внутреннем или наружном монослое мембраны. Некоторые интегральные белки связаны нековалентными связями с белками цитоплазмы (рис. 3). Подобно липидам, белковые молекулы также являются амфипатическими их гидрофобные участки окружены аналогичными «хвостами» липидов, а гидрофильные обращены наружу или внутрь клетки или в одну сторону.