Астрофизика с космической скоростью, или Великие тайны Вселенной для для тех, кому некогда - Страница 4
Универсальность физических законов – главный движитель научного прогресса. И всемирное тяготение было только началом. Только представьте себе, какое волнение охватило астрономов XIX века, когда они впервые направили на Солнце лабораторные призмы, расщеплявшие световые лучи на цветовой спектр. Спектры не просто красивы, они еще и содержат бездну информации об объекте, излучающем свет, в том числе о его температуре и составе. Химические элементы выдают себя уникальной последовательностью светлых и темных полос, рассекающих спектр. К величайшему восторгу и изумлению ученых, химические сигнатуры Солнца оказались точно такими же, как и у лабораторных веществ. Призма перестала быть инструментом одних лишь химиков и показала, что при всем различии Земли и Солнца по размеру, массе, температуре, местоположению и внешнему виду состав у обоих одинаков – водород, углерод, кислород, азот, кальций, железо и так далее. Но главное даже не перечень общих ингредиентов, а понимание, что формирование этих спектральных сигнатур на Солнце – на расстоянии 150 миллионов километров – определялось теми же самыми законами физики, что и на Земле.
Понятие об универсальности оказалось таким плодотворным, что его удалось успешно применить и в обратную сторону. Дальнейший анализ солнечного спектра выявил сигнатуру неизвестного на Земле элемента. Поскольку речь шла о солнечном веществе, новый элемент получил название «гелий» от древнегреческого слова «гелиос» – «Солнце», – и лишь потом был открыт в лаборатории. Таким образом, гелий стал первым и единственным элементом из таблицы Менделеева, который открыли не на Земле, а в другом месте.
Понятие об универсальности оказалось таким плодотворным, что его удалось успешно применить и в обратную сторону.
Итак, законы физики действуют по всей Солнечной системе – а на другом конце Галактики? На другом конце Вселенной? В прошлом и в будущем? Их испытывали и проверяли шаг за шагом. Знакомые химические элементы обнаружились и на ближайших звездах. Далекие двойные звезды, вращающиеся по орбите друг вокруг друга, похоже, знают все о Ньютоновских законах тяготения. Двойные галактики, видимо, тоже.
И чем дальше мы заглядываем в пространство, тем глубже смотрим в прошлое – это как слоистые осадочные породы для геолога. В спектрах самых дальних объектов во Вселенной видны те же химические сигнатуры, что и в наших окрестностях в пространстве и времени. Конечно, в далеком прошлом тяжелых элементов было меньше, они выработались, по большей части, при взрывах звезд следующих поколений, однако атомные и молекулярные процессы, создавшие эти спектральные сигнатуры, описываются все теми же законами. В частности, так называемая постоянная тонкой структуры, которая определяет основные особенности спектральной сигнатуры химических элементов, не менялась, по-видимому, миллиарды лет.
Вспектрах самых дальних объектов во Вселенной видны те же химические сигнатуры, что и в наших окрестностях в пространстве и времени.
Разумеется, не у всех вещей и явлений в космосе есть земные аналоги. Вам, скорее всего, не доводилось проходить сквозь облако светящейся плазмы температурой миллион градусов, и, ручаюсь, вы никогда не раскланивались на улице с черной дырой. Главное – универсальность физических законов, которые описывают даже такие неземные объекты. Когда спектральный анализ впервые применили к свету, исходящему от межзвездных облаков, была обнаружена сигнатура, у которой тоже не было земного аналога. В таблице Менделеева вроде бы не оказалось подходящего места для нового элемента. Тогда астрофизики придумали временное название «небулий» – пусть побудет, пока не удастся разобраться, что к чему. Со временем выяснилось, что газовые облака в космосе до того разрежены, что атомы пролетают огромные расстояния, ни с чем не сталкиваясь. В таких условиях электроны внутри атомов могут выделывать фокусы, которые не наблюдаются в земных лабораториях. Сигнатура небулия принадлежала обычному кислороду, просто он вел себя необычно.
Универсальность физических законов свидетельствует, что, если мы высадимся на другую планету с развитой цивилизацией, тамошняя наука будет опираться на те же самые законы, что мы открыли и проверили здесь, на Земле.
Универсальность физических законов свидетельствует, что, если мы высадимся на другую планету с развитой цивилизацией, тамошняя наука будет опираться на те же самые законы, что мы открыли и проверили здесь, на Земле, – даже если политические и общественные устои у них окажутся совсем другими. Более того, если вам захочется поговорить с пришельцами, они совершенно точно не поймут ни английского, ни французского, ни даже китайского. И никто не сможет предсказать, как они отнесутся к рукопожатию, даже если отростки у них на теле и вправду руки: как к знаку мира или как к объявлению войны. Так что лучше всего общаться на языке науки. Такая попытка была предпринята в 70-е годы прошлого века, когда были запущены «Пионер-10», «Пионер-11», «Вояджер-1» и «Вояджер-2». У этих четырех космических зондов было достаточно энергии, чтобы с помощью гравитации планет-гигантов вырваться за пределы Солнечной системы. На «Пионерах» были установлены золотые пластинки с выгравированными научными пиктограммами, изображавшими устройство Солнечной системы, наше местоположение в галактике Млечный Путь и структуру атома водорода. «Вояджеры» на этом не остановились – на них летит и золотая грампластинка с записью различных звуков матери-Земли, в том числе сердцебиение человека, песни китов и избранные музыкальные композиции со всего мира, в частности, произведения Бетховена и Чака Берри. Это сделало послание более человечным, однако неясно, способны ли уши инопланетян разобрать, что они слышат, даже если предположить, что у них вообще есть уши. Моя любимая пародия на этот жест – шутка из телепередачи «Saturday Night Live» на канале NBC, где показали письменный ответ от инопланетян, обнаруживших космический зонд. В записке лаконично говорилось: «Пришлите еще Чака Берри».
Научному прогрессу способствует не только универсальность физических законов, но и существование и неизменность физических постоянных.
Научному прогрессу способствует не только универсальность физических законов, но и существование и неизменность физических постоянных. Величина гравитационной постоянной, она же постоянная Ньютона, или G, определяет силу гравитационного взаимодействия в ньютоновском уравнении всемирного тяготения. Неизменность гравитационной постоянной в течение огромных периодов времени неоднократно подвергали косвенной проверке. Если проделать некоторые вычисления, можно определить, что от гравитационной постоянной сильно зависит светимость звезд. То есть если бы величина G в прошлом хоть немного отличалась от нынешней, количество энергии, выделяемой Солнцем, изменилось бы так сильно, что это противоречило бы имеющимся у нас биологическим, климатологическим и геологическим данным.
Вот такова однородность нашей Вселенной.
Самая знаменитая постоянная – это скорость света. Как ни несись, луч света не обгонишь. А почему? Не было проведено ни одного эксперимента, который бы показал, что какое-то тело в любой форме достигло скорости света. Об этом говорят – и опираются на это – надежные законы физики. Да, подобные заявления на первый взгляд кажутся косными и узколобыми. В прошлом от имени науки не раз и не два выступали отъявленные ретрограды, и это подорвало репутацию блестящих инженеров и изобретателей: «Мы никогда не полетим», «Полеты никогда не удастся оправдать коммерчески», «Мы никогда не расщепим атом», «Мы никогда не преодолеем звуковой барьер», «Мы никогда не попадем на Луну». Однако у всех этих заявлений есть одна общая черта: им никогда не мешали установленные законы физики. А когда мы говорим, что «никогда не обгоним луч света», это качественно иное высказывание. Оно основано на фундаментальных, проверенных временем физических принципах. На дорожных знаках для звездолетчиков будущего по праву будет написано: