Аппаратные средства персональных компьютеров. Самоучитель - Страница 15
Максимальная частота, достигнутая в процессоре AMD-K5, составила 133 МГц при коэффициенте умножения, равном 4. Правда, не все системные платы могли поддерживать такие частотные параметры, поэтому приходилось использовать процессор на частоте 100 или 120 МГц.
В последней модели Ат5х86-Р75 использовались решения, которые были реализованы в процессорах Pentium.
Для процессоров Cyrix справедливо все, что было сказано о процессорах AMD. Но при использовании этих процессоров надо учитывать то, что их внутренний математический сопроцессор был более эффективен, чем у процессоров других фирм.
Последняя модель Cyrix 5x86 по архитектуре достаточно близка к процессорам Pentium.
Из остальных фирм, которые производили процессоры семейства 486, можно упомянуть корпорацию IBM и Texas Instruments. Компьютеры с такими процессорами производства этих фирм изредка можно встретить в России. Но, следует заметить, что особых отличий от Intel 486 у них нет, разве что процессоры Texas Instruments ближе к аналогам фирмы AMD.
Процессоры Pentium
Кому-то кажется, что процессоры Pentium появились совсем недавно. Кто-то считает, что до Pentium вообще не было компьютеров, заслуживающих внимания. Иногда при разговоре о процессорах 386 («тройках» в просторечии) собеседник никак не может сообразить, что речь идет не о Pentium III. Если же вспомнить историю, то о первом процессоре Pentium было объявлено в далеком марте 1993 г., т. е. тогда, когда семейство процессоров 486 было в зените славы, a Intel DX4 еще только проектировался.
Первые процессоры Pentium имели тактовые частоты 60 МГц (100 млн. операций в секунду, 70,4 SPECint92, 55,1 SPECfp92) и 66 МГц (112 млн. операций в секунду, 77,9 SPECint92, 63,6 SPECfp92). Умножение частоты для ядра не использовалось. В то время такие частотные характеристики не особо поражали воображение, да и работа программ, которые, в основном, разрабатывались как 16-разрядные приложения, не вызывала особого восторга. К тому же, в первых партиях процессоров Pentium через некоторое время была обнаружена ошибка при делении чисел, которая проявлялась только при определенных соотношениях операндов.
Количество транзисторов на кристалле нового процессора в очередной раз достигло рекордной отметки в 3,1 млн. (технология 0,8 мкм). На рис. 2.9 показан внешний вид процессора Pentium. Число контактов у корпуса процессора со штырьковыми выводами стало равным 273. Возможности работы с памятью были аналогичны предшествующему поколению – адресуемая память равна 4 Гбайт, виртуальная память до 64 Тбайт. Но зато можно было использовать при страничной адресации до 4 Мбайт, вместо 4 Кбайт, как в 486 процессорах.
Рис. 2.9. Процессор Pentium
Чтобы понять, почему еще несколько лет параллельно развивались два поколения процессоров, надо вспомнить, что наиболее популярная операционная система Windows 3.1 была лишь надстройкой – оболочкой над MS-DOS. А эта операционная система, к сожалению, не использовала 32-разрядные возможности процессоров, поэтому программисты разрабатывали почти все программы как 16-разрядные. 32-разрядная операционная система Windows 95, если вспомнить, появилась только через два года.
Но все же реализованные именно в процессорах Pentium принципы обработки информации позволили к настоящему времени превратить обычный персональный компьютер в нечто большее, чем в простую машину для обработки цифр и текстов.
Наиболее интересное новшество, примененное в процессорах, – это использование механизма предсказаний (правда, не так, как это делают гадалки). Как должны выполняться компьютерные программы – шаг за шагом, инструкция за инструкцией. Точно так, как считают в первом классе два плюс два – к результату прибавим еще одно число.
Но ряд команд получают данные от внешней памяти и разнообразных внешних устройств, которые не отличаются быстродействием, а некоторые команды требуют больше циклов для своего выполнения. Процессор Pentium, в тех случаях, когда данные для выполнения текущей операции еще не готовы, продолжает вычисления, обрабатывая дальнейшие инструкции. К тому времени, когда будет выполнена инструкция, данные для которой поступили с опозданием, процессор уже обсчитает множество последующих команд.
Обычно, по результатам выполнения таких "медленных" инструкций в программе делается выбор между несколькими возможностями: как бы решить – идти налево или направо. Вот тут и полезен механизм предсказания. Блок предсказаний предугадывает наиболее вероятное направление дальнейших вычислений. В том случае, если выбор был правильным, все выполненные к этому моменту команды будут считаться "правильными", и процессор продолжит дальнейшие вычисления. Если же предсказание было неверным – а это бывает примерно в 20 % случаев, – то процессору ничего не остается делать, как заново начать обрабатывать инструкции, идущие за такой командой.
В дальнейшем механизм предсказаний был дополнен возможностью выполнения команд не в том порядке, как они следуют в программе.
Такие особенности архитектуры процессоров Pentium (а также самых последних моделей 486) эффективно повышают производительность процессора, не требуя повышения тактовой частоты, т. е. рассматриваемый нами процессор с тактовой частотой 100 МГц будет работать так, как обычный процессор, работающий на частоте 130 или 170 МГц. (Обратите внимание, что механизм предсказаний в каждой последующей модели процессора Pentium совершенствуется, но тонкости технологий интересны, в основном, системным программистам).
Кроме того, для повышения производительности в процессорах Pentium была применена суперскалярная архитектура. Это громкое название говорит о том, что в процессоре имеются два параллельно работающих конвейера.
Начиная с 8086, процессор загружал "за раз" не одну инструкцию для выполнения, а несколько, помещая их в очередь – конвейер. Теперь один конвейер – "основной", или U-конвейер – остался аналогичен такому же, как у 486 процессора, а второй, V-конвейер – работает с сокращенным числом команд. То есть процессор Pentium может выполнять в один и тот же момент сразу две разные инструкции.
Следующая, наиболее отличительная особенность процессоров Pentium состоит в том, что шина данных у них 64-разрядная, хотя работают они с 32-разрядной арифметикой. Часто из-за этого их ошибочно относят к 64-разрядным процессорам, но на самом деле они принадлежат к семейству 32-разрядных процессоров. Только в процессоре Itanium разработчики корпорации Intel действительно полностью реализовали 64-разрядную архитектуру.
Удвоение разрядности шины данных позволяет ускорить работу с внешней оперативной памятью. Используя возможности 64-разрядной шины, можно за один такт считать или записать в память сразу несколько инструкций или 8-байтных данных. Правда, не всегда производительность компьютера возрастает в два раза, т. к. частенько важен лишь один байт данных или одна 16-разрядная инструкция. В этих случаях "лишние" данные отбрасываются.
Кэш
В процессорах семейства Pentium, опять-таки для повышения производительности компьютера, серьезной доработке подвергся механизм кэширования оперативной памяти.
Тактовая частота ядра современных процессоров в настоящее время возросла в 1000 раз и превысила 2000 МГц, а вот частотные характеристики оперативной памяти сильно отстают. Например, модули дешевой динамической памяти работают на частоте всего 133 МГц.
Разрыв обозначился уже при появлении первых 16-разрядных процессоров. Микросхемы памяти, которые могли работать на той же скорости, что и процессор, оказались слишком дорогими для применения в персональных компьютерах. А дешевые микросхемы динамической памяти, которые позволяли хранить много данных, увы, не отличались быстродействием. Поэтому разработчики компьютеров использовали принцип организации памяти, который применяли в больших ЭВМ.