Апология математики, или О математике как части духовной культуры - Страница 23

Изменить размер шрифта:

Так зачем же говорить о такой поверхности, которой нет и не может быть, возмутится читатель. А дело в том, что такая поверхность есть, только “живёт” она в четырёхмерном пространстве. Чтобы понять, как можно изготовить бутылку Клейна при помощи четвёртого измерения, следует вновь обратиться к флатландской аналогии. Обычная бутылка есть двумерная поверхность в трёхмерном пространстве. Что является её аналогом на плоскости? Тень бутылки? Нет, аналог должен быть на одно измерение меньше окружающего пространства, то есть в данном случае одномерным. Обведём карандашом контур тени, сделав в этом обводе перерыв на месте отверстия горлышка. Полученная линия и является искомым одномерным аналогом двумерной бутылки. Представим себе эту линию в виде тонкой и гибкой проволоки. У этой проволочной фигуры можно выделить дно, горлышко и две стенки. Можно ли, не выходя за пределы плоскости, изогнуть горлышко так, чтобы коснуться им дна? Разумеется, можно, но только с наружной стороны; коснуться с внутренней стороны (то есть со стороны тени) невозможно, для этого пришлось бы пересечь одну из стенок. Однако можно коснуться и с внутренней стороны, если разрешить выход за пределы плоскости: в том месте, где проволочное горлышко хочет пересечь проволочную стенку, надо приподнять горлышко над плоскостью, провести его над стенкой наподобие моста, а затем снова опустить на ту же плоскость - но уже внутри бутылки. И дотянуть горлышко до дна. А теперь, напрягая воображение и прибегая к аналогии, можно постараться представить себе изгибание горлышка двумерной бутылки в четвёртом измерении - с последующим касанием дна изнутри.

И евклидово пространство средней школы, и трёхмерная сфера ориентируемы. В них отсутствуют траектории, приводящие к зеркальному отражению. Но теоретические представления о возможной геометрической структуре Вселенной не исключают того, что она неориентируема. А тогда путешествие, приводящее к зеркальному отражению путешественника, может быть осуществлено и без выхода из нашего трёхмерного мира. Таким образом, не вполне прав был поэт, сказавший:

Какая тяжкая обида

Существовать и твёрдо знать,

Что из пустых пространств Евклида

Нам никуда не убежать.

И нам с тобою неужели

Идти в грядущие года -

Как в бесконечность параллели,

Не пересекшись никогда.

1 Благодарю В. И. Беликова, подсказавшего это свидетельство.

2 В 8-томнике В. А. Каверина (1980) фамилия персонажа Ногин. (Примеч. ред.)

3 Этот многим знакомый пример листа Мёбиуса автор узнал от Г. Б. Шабата.

обсудить в форуме

- ›

Апология математики, или О математике как части духовной культуры - pic_8.png

в начало страницы

This file was created with BookDesigner program
[email protected]
21.01.2010
Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com