100 великих изобретений - Страница 142

Изменить размер шрифта:

Лазеры очень быстро вошли в жизнь человека и стали применяться во многих областях техники и науки. Их промышленный выпуск начался в 1965 году, когда только в Америке более 460 компаний взялись за разработку и создание лазерных установок.

94. ИНТЕГРАЛЬНАЯ МИКРОСХЕМА

Микроэлектроника — наиболее значительное и, как считают многие, важнейшее научно-техническое достижение современности. Сравнить ее можно с такими поворотными событиями в истории техники, как изобретение книгопечатания в XVI веке, создание паровой машины в XVIII веке и развитие электротехники в XIX. И когда сегодня речь заходит о научно-технической революции, то в первую очередь имеется в виду именно микроэлектроника. Как ни одно другое техническое достижение наших дней, она пронизывает все сферы жизни и делает реальностью то, что еще вчера было просто невозможно себе представить. Чтобы убедиться в этом, достаточно вспомнить о карманных микрокалькуляторах, миниатюрных радиоприемниках, электронных управляющих устройствах в бытовых приборах, часах, компьютерах и программируемых ЭВМ. И это лишь небольшая часть области ее применения!

Своим возникновением и самим существованием микроэлектроника обязана созданию нового сверхминиатюрного электронного элемента — интегральной микросхемы. Появление этих схем, собственно, не было каким-то принципиально новым изобретением — оно прямо вытекало из логики развития полупроводниковых приборов. Поначалу, когда полупроводниковые элементы только входили в жизнь, каждый транзистор, резистор или диод использовался по отдельности, то есть заключался в свой индивидуальный корпус и включался в схему при помощи своих индивидуальных контактов. Так поступали даже в тех случаях, когда приходилось собирать множество однотипных схем из одних и тех же элементов. Но постепенно пришло понимание того, что подобные устройства рациональнее не собирать из отдельных элементов, а сразу изготавливать на одном общем кристалле, тем более что полупроводниковая электроника создавала для этого все предпосылки. В самом деле, все полупроводниковые элементы по своему устройству очень похожи друг на друга, имеют одинаковый принцип действия и различаются только взаиморасположением p-n областей. Эти p-n области, как мы помним, создаются путем внесения однотипных примесей в поверхностный слой полупроводникового кристалла. Причем надежная и со всех точек зрения удовлетворительная работа подавляющего большинства полупроводниковых элементов обеспечивается при толщине поверхностного рабочего слоя в тысячные доли миллиметра. В самых миниатюрных транзисторах обычно используется только верхний слой полупроводникового кристалла, составляющий всего 1% его толщины. Остальные 99% выполняют роль носителя или подложки, так как без подложки транзистор просто мог разрушиться от малейшего прикосновения. Следовательно, используя технологию, применяемую для изготовления отдельных электронных компонентов, можно сразу создать на одном кристалле законченную схему из нескольких десятков, сотен и даже тысяч таких компонентов. Выигрыш от этого будет огромный. Во-первых, сразу снизятся затраты (стоимость микросхемы обычно в сотни раз меньше, чем совокупная стоимость всех электронных элементов ее составляющих). Во-вторых, такое устройство будет гораздо надежнее (как показывает опыт, в тысячи и десятки тысяч раз), а это имеет колоссальное значение, поскольку поиск неисправности в схеме из десятков или сотен тысяч электронных компонентов превращается в чрезвычайно сложную проблему. В-третьих, из-за того, что все электронные элементы интегральной микросхемы в сотни и тысячи раз меньше своих аналогов в обычной сборной схеме, их энергопотребление намного меньше, а быстродействие — гораздо выше.

Ключевым событием, возвестившем приход интегрализации в электронику, явилось предложение американского инженера Дж. Килби из фирмы «Texas Instruments» получать эквивалентные элементы для всей схемы, такие как регистры, конденсаторы, транзисторы и диоды в монолитном куске чистого кремния. Первую интегральную полупроводниковую схему Килби создал летом 1958 года. А уже в 1961 году фирма «Fairchild Semiconductor Corporation» выпустила первые серийные микросхемы для ЭВМ: схему совпадений, полусдвигающий регистр и триггер. В том же году производство полупроводниковых интегральных логических схем освоила фирма «Texas». В следующем году появились интегральные схемы других фирм. В короткое время в интегральном исполнении были созданы различные типы усилителей. В 1962 году фирма RCA разработала интегральные микросхемы матриц памяти для запоминающих устройств ЭВМ. Постепенно выпуск микросхем был налажен во всех странах — эра микроэлектроники началась.

Исходным материалом для интегральной микросхемы обычно служит необработанная пластина из чистого кремния. Она имеет сравнительно большие размеры, так как на ней одновременно изготавливают сразу несколько сотен однотипных микросхем. Первая операция состоит в том, что под воздействием кислорода при температуре 1000 градусов на поверхности этой пластины формируют слой двуокиси кремния. Оксид кремния отличается большой химической и механической стойкостью и обладает свойствами прекрасного диэлектрика, обеспечивающего надежную изоляцию расположенному под ним кремнию. Следующий шаг — внесение примесей для создания зон p или n проводимости. Для этого оксидную пленку удаляют с тех мест пластины, которые соответствуют отдельным электронным компонентам. Выделение нужных участков происходит с помощью процесса, получившего название фотолитографии. Сначала весь слой оксида покрывают светочувствительным составом (фоторезистом), который играет роль фотографической пленки — его можно засвечивать и проявлять. После этого через специальный фотошаблон, содержащий рисунок поверхности полупроводникового кристалла, пластину освещают ультрафиолетовыми лучами. Под воздействием света на слое оксида формируется плоский рисунок, причем незасвеченные участки остаются светлыми, а все остальные — затемненными. В том месте, где фоторезистор подвергся действию света, образуются нерастворимые участки пленки, стойкие к кислоте. Затем пластину обрабатывают растворителем, который удаляет фоторезист с засвеченных участков. С открывшихся мест (и только с них) слой оксида кремния вытравливают с помощью кислоты. В результате в нужных местах оксид кремния растворяется и открываются «окна» чистого кремния, готовые к внесению примесей (лигированию). Для этого поверхность подложки при температуре 900-1200 градусов подвергают воздействию нужной примеси, например, фосфора или мышьяка, для получения проводимости n-типа. Атомы примеси проникают в глубь чистого кремния, но отталкиваются его оксидом. Обработав пластину одним видом примеси, готовят ее для лигирования другим видом — поверхность пластины вновь покрывают слоем оксида, проводят новую фотолитографию и травление, в результате чего открываются новые «окошки» кремния. Вслед за тем следует новое лигирование, например бором, для получения проводимости p-типа. Так на всей поверхности кристалла в нужных местах образуются p и n области. (Изоляция между отдельными элементами может создаваться несколькими способами: такой изоляцией может служить слой оксида кремния, можно также создавать в нужных местах запирающие p-n переходы.) Следующий этап обработки связан с нанесением токопроводящих соединений (токопроводящих линий) между элементами интегральной схемы, а также между этими элементами и контактами для подключения внешних цепей. Для этого на подложку напыляют тонкий слой алюминия, который оседает в виде тончайшей пленки. Ее подвергают фотолитографической обработке и травлению, аналогичным описанным выше. В результате от всего слоя металла остаются только тонкие токопроводящие линии и контактные площадки. В заключение всю поверхность полупроводникового кристалла покрывают защитным слоем (чаще всего, силикатным стеклом), который затем удаляют с контактных площадок. Все изготовленные микросхемы подвергаются строжайшей проверке на контрольно-испытательном стенде. Дефектные схемы помечаются красной точкой. Наконец кристалл разрезается на отдельные пластинки-микросхемы, каждая из которых заключается в прочный корпус с выводами для присоединения к внешним цепям.

Оригинальный текст книги читать онлайн бесплатно в онлайн-библиотеке Knigger.com