100 великих изобретений - Страница 140
Первые космические аппараты отличались своей индивидуальностью. Даже не вникая глубоко в их конструкцию, по одному только внешнему виду можно было сразу сказать, что это совершенно разные устройства. Но аппараты, изготовляемые каждый раз по индивидуальному заказу, обходились дорого. Поэтому в последующие годы в СССР было принято решение перейти от индивидуального производства спутников к серийному. Таким серийным советским спутником стал «Космос». 16 марта 1962 года был запущен первый спутник этой серии.
93. ЛАЗЕР
Несмотря на сравнительно простое устройство лазера, процессы, лежащие в основе его работы, чрезвычайно сложны и не поддаются объяснению с точки зрения классических законов физики. Со времен Максвелла и Герца в науке утвердилось представление о том, что электромагнитное и, в частности, световое излучение имеет волновую природу. Эта теория хорошо объясняла большинство наблюдаемых оптических и физических явлений. Но уже в конце XIX века были получены некоторые экспериментальные данные, не подходившие под эту теорию. (Например, совершенно непонятным с точки зрения классических представлений о волновой природе света оказывалось явление фотоэффекта.) В 1900 году известный немецкий физик Макс Планк, пытаясь объяснить природу этих отклонений, сделал предположение, что испускание электромагнитного излучения и, в частности, света происходит не беспрерывно, а отдельными микроскопическими порциями. В 1905 году Эйнштейн, разрабатывая теорию фотоэффекта, подкрепил идею Планка и убедительно показал, что электромагнитное излучение действительно испускается порциями (эти порции стали называть квантами), причем в дальнейшем, в процессе распространения, каждая порция сохраняет свою «индивидуальность», не дробится и не складывается с другими, так что поглотить ее можно только всю целиком. Из этого описания получалось, что кванты во многих случаях ведут себя не как волны, а как частицы. Но при этом они не перестают быть волнами (например, квант не имеет массы покоя и существует только двигаясь со скоростью 300000 км/с), то есть им присущ определенный дуализм.
Квантовая теория позволила объяснить многие прежде непонятные явления и, в частности, природу взаимодействия излучения с веществом. Возьмем простой пример: почему тело при нагревании испускает свет? Нагревая, скажем, на газовой горелке гвоздь, мы заметим, что сначала он приобретает малиновый цвет, потом станет красным. Если продолжать нагревание, то красный цвет переходит в желтый и затем в ослепительно белый. Таким образом, гвоздь начинает излучать не только инфракрасные (тепловые), но и видимые лучи. Причина этого явления следующая. Все тела (и в том числе наш гвоздь) состоят из молекул, а молекулы состоят из атомов. Каждый атом представляет собой небольшое очень плотное ядро, вокруг которого вращается большее или меньшее количество электронов. Эти электроны движутся вокруг ядра не как попало, но каждый из них находится на своем точно установленном уровне; соответственно одни уровни располагаются ближе к ядру, а другие дальше от него. Эти уровни называются энергетическими, так как каждый из расположенных на них электронов обладает своей определенной, свойственной только этому уровню, энергией. Пока электрон находится на своем стационарном уровне, он движется, не излучая энергии. Такое состояние атома может продолжаться сколь угодно долго. Но если атому сообщается извне какое-то определенное количество энергии (как это происходит при нагревании гвоздя), атом «возбуждается». Суть этого возбуждения состоит в том, что электроны поглощают кванты излучения, пронизывающего вещество (в нашем примере инфракрасное тепловое излучение газовой горелки), приобретают их энергию и благодаря этому переходят на более высокие энергетические уровни. Однако на этих более высоких уровнях электроны могут находиться лишь очень незначительное время (тысячные и даже миллионные доли секунды). По истечении этого времени каждый электрон опять возвращается на свой стационарный уровень и при этом испускает квант энергии (или, что то же самое, волну определенной длины). Среди этих волн некоторые приходятся на видимый диапазон (эти кванты видимого света называются фотонами; излучение фотонов возбужденными атомами мы и наблюдаем как свечение нагретого гвоздя). В нашем примере с гвоздем процесс поглощения и испускания квантов протекает хаотически. В сложном атоме наблюдается большое число переходов электронов с верхних уровней на нижние, и при каждом из них происходит излучение со своей частотой. Поэтому излучение идет сразу в нескольких спектрах и в разных направлениях, причем одни атомы испускают фотоны, а другие поглощают их.
Точно так же происходит испускание квантов любым нагретым телом. Каждое из этих тел (будь то Солнце, дуговая сварка или нить лампы накаливания) испускает одновременно множество волн разной длины (или, что то же самое, квантов разной энергии). Именно поэтому, какой бы совершенной линзой или другой оптической системой мы ни обладали, нам никогда не удастся сфокусировать испускаемое нагретым телом излучение в строго параллельный пучок — он всегда будет расходиться под некоторым углом. Это и понятно — ведь каждая волна будет преломляться в линзе под своим собственным углом; следовательно, ни при каких условиях мы не сумеем добиться их параллельности. Однако уже основоположники квантовой теории рассмотрели и другую возможность излучения, которая не имеет места в естественных условиях, но вполне может быть смоделирована человеком. В самом деле, если бы удалось возбудить все электроны вещества, принадлежащие к одному определенному энергетическому уровню, а потом заставить их разом испустить кванты в одном направлении, то можно было бы получить чрезвычайно мощный и в то же время исключительно однородный импульс излучения. При фокусировании такого пучка (поскольку все волны, его составляющие, имеют одну и ту же длину) можно было бы добиться почти идеальной параллельности луча. Впервые о возможности такого, как он его назвал, стимулированного излучения написал в 1917 году Эйнштейн в работах «Испускание и поглощение излучения по квантовой теории» и «К квантовой теории излучения».
Стимулированное излучение может быть, в частности, достигнуто следующим способом. Представим себе тело, электроны которого уже «перевозбуждены» и находятся на верхних энергетических уровнях, и предположим, что их облучают новой порцией квантов. В этом случае происходит процесс, напоминающий лавину. Электроны уже «перенасыщены» энергией. В результате дополнительного облучения они срываются с верхних уровней и переходят лавинообразно на нижние, испуская кванты электромагнитной энергии. Причем направление и фаза колебаний этих квантов совпадает с направлением и фазой падающей волны. Произойдет как бы эффект резонансного усиления волны, когда энергия выходной волны будет многократно превосходить энергию той, что была на входе.
Но каким образом добиться строгой параллельности излучаемых фотонов? Оказывается, это можно сделать с помощью весьма несложного приспособления, которое называется открытым зеркальным резонатором. Он состоит из активного вещества, помещенного в трубке между двумя зеркалами: обычного и полупрозрачного. Испускаемые веществом фотоны, попадая на полупрозрачное зеркало, частично проходят сквозь него. Остальные отражаются и летят в противоположном направлении, затем отражаются от левого зеркала (теперь уже все) и вновь достигают полупрозрачного зеркала. При этом поток фотонов после каждого прохода через возбужденное вещество многократно усиливается. Усиливаться, впрочем, будет только та волна, которая перемещается перпендикулярно зеркалам; все остальные, которые падают на зеркало хотя бы с незначительным отклонением от перпендикуляра, не получив достаточного усиления, покидают активное вещество через его стенки. В результате выходящий поток имеет очень узкую направленность. Именно такой принцип получения стимулированного излучения лежит в основе действия лазеров (само слово лазер составлено из первых букв английского определения light amplification by stimulated emission and radiation, что означает: усиление света посредством стимулированного излучения).